

Solar Thermal Fuel Production at DLR

Hans Müller-Steinhagen, Robert Pitz-Paal, Christian Sattler Institute of Technical Thermodynamics German Aerospace Centre (DLR)

Conversion of Solar Energy into Solar Fuels

Criteria for the Selection of Suitable Processes for Solar Thermal Fuel Production

- Tenvironmentally benign and safe process.
- ▼ Technically feasible operation temperature, concentration factor, materials, reaction, throughput.
- High availability of feed-stock.
- **7** Fast reactions with short residence time are preferable.
- → High overall process efficiency.
- Fuel must be produced at acceptable cost

Solar Thermal Fuel Production Routes

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Partly-Solar Hydrogen

Solar Steam Reforming of Natural Gas

TEXTERIAL EXTERIX

→ Indirect: MUSTR, CSIRO

Direct: SCR, SOLASYS, SOLREF

7 FP 6 Project

▼ Enhanced Receiver + Demo Model

→ Partner DLR, WIS, ETH/PSI, JM, SHAP, HyGear, CERTH/CPERI

Experimental Results SOLASYS (EU FP4)

Development of Receiver/Reactor

- Develop an advanced catalytically-active absorber featuring the following properties:
 - High catalytic activity with high resistance to coking.
 - Good absorption for thermal radiation.
 - Acceptable mechanical strength and thermal shock resistance.
 - → High gas permeability together with high turbulence and mixing of the gases as well as low pressure drop.
 - **7** Low costs.

Schematic of Solar Reformer

Solar Steam Reforming of Natural Gas - SOLREF

2004 - 2008

Consortium:

- DLR (DE) (Coordinator)
- CERTH/CPERI (EL)
- WIS (IL)
- ETH (CH)
- Johnson Matthey Fuel Cell Ltd. (UK)
- HyGear B.V. (NL)
- SHAP S.p.A. (I)

Location North Africa?

H₂-Production by Solar Cracking of Hydrocarbons

- → Work done by ETH, PSI, CNRS, WIS ...
- Decarbonisation of Methane

$$CH_4 \leftrightarrow C + 2H_2$$

- **→** Temperature > 1300°C
- → Ambient pressure.
- CH₄ + C-particles Conversion rate 70%.
 - Theoratical system efficiency: 30%
 - Cost: 8 ct/kWh [Dahl et al.] (0-14 ct/kWh depending on the use of the carbon)
 - **→** EU Project SOLHYCARB since March 2006
 - → Partner CNRS/PROMES (FR) Coordinator, ETH, PSI (CH), WIS (IL), CERTH/CPERI (EL), DLR (DE), TIMCAL (BE), SOLUCAR (SP), CREED (FR), N-GHY (FR)

Solar, Carbon-Free Hydrogen Production

- ▼ Today, hydrogen is still a bulk chemical rather than an energy vector
- ✓ Annual production:
 600 700 billion Nm³/year
 equal to 53 62 Mt/year
- Virtual value100 billion €/year
- → Growth rate about10 %/year (2003, Linde)
- Only 4 % traded commercially
- → Ammonia production alone generates about 250 Mt CO₂/a

Solar, Carbon-Free Hydrogen Production

HYTHEC - Sulphur/Iodine and Hybrid Sulfuric Acid Cycle

- Also named General Atomics Cycle or ISPRA Mark 16 and Hybrid Sulfuric Acid Cycle also known as Westinghouse Cycle or ISPRA Mark 11
- EU FP6 STREP HYTHEC
- Solarisation of H₂SO₄ splitting
- Improvement of processes and increase of efficiency
- Design study for a H₂/Elctricity Cogeneration plant
- Evaluation of solar, nuclear, and hybrid concepts
- Partners: CEA (coordinator), DLR, EA, Uni Sheffield, Uni Roma Tre, ProSim

HYDROSOL: MONOLITH REACTOR FOR HYDROGEN GENERATION FROM SOLAR WATER SPLITTING

- → STREP EU FP 5 (Nov. 2002 Oct. 2005)
- Consortium: CERTH/CPERI APTL (EL, Coordinator), DLR (D), Johnson Matthey Fuel Cell Ltd. (UK), StobbeTech (DK)
- **→** Objectives:
 - → Development of novel active redox materials for the water splitting and regeneration reactions at moderate temperatures (800-1300 °C).
 - → Design, construction, and test operation of a prototype reactor for continuous hydrogen generation based on a thermochemical cycle applying mixed iron oxides
 - Feasibility of operability of solar thermal two-step hydrogen production
 - Evaluation of techno-economic potential of the technology

HYDROSOL – Principle of Operation

HYDROSOL – Principle of Operation

Batch-Reaktor after completion

Coated absorber

DLR Solar Furnace, Köln-Porz

Operation started in 1994

Off-axis Concept

Heliostat 60 m²

Concentrator 39 m²

160 Facettes, 3 Focal lengths

Concentration: 5500 = 5 MW/m²

Power max. 25 kW

Focus 13 cm (90%)

 T_{max} 2700 °C

Long-term test

Hydrogen generation for 53 cycles performed with one sample

Efficiency and characteristics of operation

- ▼ stability of the redox/support-composite proved up to
 40 cycles of constant H₂ production
- quasi-continuously hydrogen generation / alternating reaction conditions
- → SiC and in particular SiSiC turned out as very suitable, robust support material
- Reaction controlled by kinetics

Efficiency of the solar furnace operation:

$$\begin{split} \eta_{\text{ reactor}} &= 0.20 \text{ - } 0.28 \\ \eta_{\text{ (reactor)}} &= \left(Q_{\text{sensible}} + \text{mass flow}_{\text{ (H2)}} * \text{HHV}_{\text{ (H2)}}\right) / Q_{\text{solar}} \\ \eta_{\text{ process}} &= 0.05 \text{ - } 0.09 \\ \eta_{\text{ process}} &= \left(\text{mass flow}_{\text{ (H2)}} * \text{HHV}_{\text{ (H2)}}\right) / Q_{\text{solar}} \end{split}$$

Effizienzvergleich HYDROSOL – Elektrolyse

Reactor for continuous hydrogen production:

- Reactor with two modules
- Two different alternating processes:
 - Production: 800°C, water steam, nitrogen, exothermic
 - Regeneration: 1200°C, nitrogen, endothermic
- Transient steps like
 - Switching between half cycle
 - Start-up / Shutdown
- Temperature gradient on the coated structure
- Fluctuating irradiation (daily / annually)

Reactor for continuous hydrogen production:

- 15 kW_{th} two chamber system
- Continuous hydrogen production
- Four way valve
- Preheating of feed gas
- Measure point for mass-spectrometry
- Quartz window

The "Conti-Reactor" during test-operation

HYDROSOL II

- Start 2006
- New additional Partner CIEMAT
- 100 kW_{th}-scale
- Quasi continuous hydrogen production
- 2 modules: production/regeneration
- Use of 9 coated squared ceramic structures (150mm x 150mm x 50mm)
- Installation at SSPS Tower on PSA in the 2nd half of 2007

HYDROSOL – Design Study

Results of Simulation

- ightharpoonup P_{tot,d} = 200 MW at noon on June 21st
- → 3264 heliostats needed, which is equivalent to A_{mir,tot} = 396 000 m²
- **→** Land area of 2.0 km²
- → Tower height: 230 m
- Annual production: P_{H2} = 238 GWh(HHV H_2)/a or V_{H2} = 80 Mio. Nm³/a or 7200 t/a.

Investment costs

Component	Unit price	Units	Total [€]
Heliostats	130 €m²	3264 x 121.34 m ²	51 500 000
Land	1 M\$/km²	2.0 km ²	2 000 000
Tower		(230 m)	5 100 000
Buildings	3 M€	1	3 000 000
HT receiver modules	40 000 €	502	20 100 000
LT receiver modules	17 000 €	561	9 500 000
Heat exchanger	3 M€50MW	200 MW	12 000 000
Heat recovery boiler	1 M€ 50MW	200 MW	4 000 000
Pumps & Piping	.4 M€ / 50MW	200 MW	1 600 000
Sum			149 600 000
Safety surcharge	10%		15 000 000
Total Investment I ₀			165 000 000

Operational costs

Fixed costs	Unit price	Units	Total [€a]
Personal	70 000 €a	10	700 000
Insurance	2% of I_0		3 300 000
Maintenance	4% of I_0		6 600 000
Redox System	3.7 M€a for 50 MW	(for 200 MW)	14 800 000
Variable costs			
Separation Unit	2633 k€a for 50 MW	(for 200 MW)	10 532 000
Nitrogen	294 k€a for 50 MW		1 176 000
Water	11 k€a for 50 MW		44 000
Electricity	1777 k€a for 50 MW		7 108 000
Sum			44 260 000

Conclusion and Outlook

- ▼ Solar fuels have a huge potential to become the energy carriers of the future especially for mobile applications
- → Thermal production is more efficient than electrolysis
- The solar research of DLR will continue its work on reforming and cracking of carbonaceous materials (e.g. natural gas) because of the short and medium term chances of these technologies
- → Solar thermal up-grading of biomass is not efficient.
- Thermochemical cycles for hydrogen production are for long term use
- ▼ Three main problems have to be solved:
 - Heat provision
 - Material properties of components and reactants
 - Product separation
- The aim is to produce renewable fuels by ecologically and economically reasonable technologies

Acknowledgement

The Projects HYDROSOL, HYDROSOL- II; HYTHEC, SCR, SOLASYS, SOLREF, SOLHYCARB, Hi2H2, and INNOHYP-CA have been co-funded by the European Commission.

HYDROSOL has been awarded

- → Eco Tech Award Expo 2005, Tokyo
- → IPHE Technical Achievement Award 2006
- → Descartes Prize 2006

