

Cairo, Nov. 2007

Objective of Integration of Utilities

Integration is one of the concepts that have the best potential of increasing overall efficiency in the power industry

Further Lices don's

- > Higher efficiency means
 - Less energy consumption
 - Less waste heat rejection to ambient
 - Reduced impact on environment
- > Centralized cooling increases comfort for individual users
- > Makes renewable energy more economic
- > Reduces cost for peak power production facilities

Examples in Trigeneration

- Scandinavia has extensive district cooling systems with absorption and compression systems
 - Stockholm
 - Helsinki
 - Västeras
 - Göteborg
- > But only very few installations around the Mediterranean

Power Cooling and Water

Integration of Desalination adds another product to the plant

Frankland Con Dones

- > Power and Cooling can be integrated quite easily because there is only one thermal consumer
- Heating and cooling is usually not coincindental
- Water production is mostly coincidental with cooling much unlike heating and cooling
- Therefore the cooling machinery is competing with the desalination for the available heat
- > Desalination has different requirements

Interface Conditions

Consumer	Media to provide	temperature	
		supply / return	
space heating	Hot water	70/100°C / 40-60°C	
sanitary hot water	Hot water	min. 60°C	
kitchens and laundries	steam	4 bar min.	
Air conditioning	cold water	5-8°C / 12- 18°C	
Absorption Chillers SE	steam	0.8 to 1.5 bar abs.	
MED desalination	steam	0.35 bar abs. for	
vacuum pumps	steam	min. 3-4 bar	
MED with TVC	steam	min. 3 bar .	

Competing Heat Consumers

Cooling and Desaliation compete for the available heat

Turspectation done

- The two systems require heat at different temperature levels
- Selection of temperature level is very important
- Using steam at a too high level has a negative impact on the power generation process

Efficiency of cooling

How to compare systems? One way is compare the impact on the power generation

The table includes

- > Power consumption of chiller
- > Power consumption of cooling water pump
- Loss of electrical power output due to steam extraction
- Values calculated for 34°C/43°C cooling water
- Conventional2–2.5 kW cooling /kWel

Which System to select?

Freshall Can done

Power and Cooling

The simulation has revealed some very interesting results:

- Single effect absorption chiller can outperform other systems when using bleed steam at a properly selected pressure
- Combinations with steam turbine and absorption very competitive
- Sas turbines and heat recovery boilers + double effect chiller are almost as efficient but has higher CAPEX
- Maintenance cost must be considered also

Example

The boundary conditions for all cases are

cooling water

34°C summer / 25°C Winter

condensing turbine stage only for RO-coupled plant

MED coupled unit with back pressure turbine , T sat 85°C winter / 105 °C summer

Back pressure is higher than required by MED because chillers need the temperature

Result

- > The processes with MED will show a higher power loss for two reasons:
- > Bleed pressure too high for MED
- Efficient absorption chiller must be replaced by compressor due to insufficient steam quantity

Energy blances for the examples

Juston Jus

	Cooling GWh	Water Mm3/a	Power GWh	Gas GWh
No water production	302	0	63	441
5000 m ³ /d RO	302	1,79	63	474
5000 m³/d MED	302	1,79	63	527
5000 m ³ /d RO	302	1,79	93	575
5000 m ³ /d MED	302	1,79	93	579

Effect of Competing Heat Consumers

Further Lies Done

- Improper design can have negative effects
- Desalination
 plant receives
 too much heat
- Absorption chillers replaced by compressors
- > Reduction in plant efficiency

Summary

- Solar powered thermal desalination use the waste heat at very low temperature (70°C)
- > The power process of a dry cooled and cogeneration unit has roughly the same condensing temperature (70°C)
- > The dry cooed process has to reject the heat but the combined process uses it for desalination
- Combined plants are more efficient than a remote solar thermal plant using dry condensers and coastal RO
- The key to efficient use of solar energy is optimized thermal process using the condenser for desalination instead dry cooled plants

Summary

- > Tri-Generation (Power / Water / Cooling) is the most efficient way to reduce fuel consumption and environmental impact
- If plants are large enough and 5000m³/d is small! Steam turbines with dual pressure exhaust are available for optimized performance of MED desalination
- A minimum of 10000 to 15000 m³/d of desalination should be taken into consideration to make plant cost effective
- > Properly designed units can reach identical performance provided the absorption units take the majority of the load
- Thermal cogeneration unit can most efficiently use biomass or solar energy as a fuel saver

